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Abstract—The problem of stabilizing a chain of three integrators subject to a phase constraint
is studied. Continuous constrained control in the form of nested sigmoids, which guarantees
the fulfillment of the phase constraint, is synthesized. A Lyapunov function is constructed, and
necessary and sufficient conditions of global stability of the closed-loop system are established.
The discussion is illustrated by numerical examples.
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1. INTRODUCTION

The problem of stabilizing a chain of three integrators subject to a phase constraint by means
of a continuous control is studied. Stabilization of chains of integrators is one of the topical
control problems, which has been widely discussed in the literature during last several decades
(see, e.g., [1, 2] and references therein). The interest to this problem is due to the fact that original
models in many applications are specified as chains of integrators and the controls developed for
chains of integrators are easily extended to other classes of systems.

Among the variety of stabilizing controls applied to solving this problem, the class of feedbacks in
the form of nested (both smooth and non-smooth) saturation functions can be distinguished [2–14].
The interest to such feedbacks is explained by the number of remarkable properties of the closed-
loop system obtained: they automatically take into account boundedness of the control resource and
ensure fulfillment of certain phase constraints, which is especially important far from the equilibrium
state, as well as guarantee exponential rate of the deviation decrease near the equilibrium [3–7].
Note also the use of such feedbacks in the problems related to the adjustment of coefficients in the
robust control laws [8].

The use of feedbacks in the form of nested saturation functions gives rise to study of quite
complicated nonlinear systems (in the case of non-smooth saturation functions, these are linear
switching systems), stability analysis of which is a nontrivial task. Global stability has been proved
mainly for second-order systems with nested saturators [3, 5, 9] and sigmoids [3, 10]. Practically
in all works studying systems of order three or higher, only local stability was proved [3, 4, 11, 12].
In rare cases of feedbacks of special form, global stability has been established for systems of order
three [12] (piecewise continuous control) or four [13] (impulse control). As far as the authors
know, the problem of global stability for the general case of n nested saturators was considered
only in the works by A. Teel [2, 14]. However, global stability has been proved only in the case
where limit values of the nested saturators satisfy certain inequalities, which are seldom fulfilled in
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Fig. 1. Examples of saturation functions: sat(x) (1); tanh(x) (2); 2arctan(x)/π (3); x/(1 + |x|) (4).

practice [2, Theorem 2.1]. The authors are not aware of works (except for abovementioned Teel’s
papers) where global stability were proved for a system of order three or higher stabilized by a
continuous control guaranteeing fulfillment of a phase constraint.

Saturation function is a continuous nondecreasing function S(x) of scalar variable that has finite
limits when x→ ±∞. Among the saturation functions, the class of smooth strongly increasing
functions called sigmoids can be distinguished [15]. In the literature, one can meet several slightly
differing definitions of the sigmoids. We will use the following

Definition 1. Sigmoid is a smooth strongly increasing odd function of scalar variable σ(x) sat-
isfying the following conditions:

(a) σ(x) → ±1 as x→ ±∞;
(b) maxx σ

′(x) = σ′(0);
(c) σ′(0) = 1.

Functions satisfying the above definition but having different from ones limits at infinity and deriva-
tive at zero are referred to as sigmoid functions. Any sigmoid function S(x) can be constructed
from a sigmoid σ(x) by specifying two coefficients: S(x) = k2σ(k1x), k1, k2 > 0. It is easy to see
that, for any two sigmoid functions S1(x) and S2(x), S(x) = S1(S2(x)) is also a sigmoid function.
When proving global stability, we will need the inequalities

S(x)x > 0 ∀x 	= 0, (1)

[S(x+ x0)− S(x0)]x > 0 ∀x 	= 0, ∀x0, (2)

which directly follow from the definition of the sigmoid.

The family of the sigmoid functions includes error function, arctangent, hyperbolic tangent,
and other functions of similar form. The limit case of the sigmoid is the non-smooth saturation
function called saturators: sat(x) = x when |x| � 1 and sat(x) = sgn(x) when |x| > 1. Examples
of the saturation functions are shown in Fig. 1. Other examples of the saturation functions and
discussions of their properties can be found in [15]. In the control problems, the hyperbolic tangent
is most often used as a sigmoid since it approximates the saturator better than other smooth
saturation functions and, moreover, its derivatives are expressed in terms of the function itself. In
the framework of this study, it does not matter what sigmoid is used in the feedback, since the
proof of global stability is valid for any functions satisfying the above definition.

In this work, we suggest to stabilize a chain of three integrators by means of a special feedback
including two nested sigmoids. The goal of the study is to prove global stability of the closed-loop
system obtained under certain simple conditions on the feedback coefficients.
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2. PROBLEM STATEMENT

We consider the problem of stabilizing a third-order integrator

ẋ1 = x2, ẋ2 = x3, ẋ3 = U(x), x ≡ [x1, x2, x3]
T, (3)

at the origin by means of a smooth feedback U(x) guaranteeing the fulfillment of the phase con-
straint

|x3(t)| � X3. (4)

Such a statement naturally comes to existence in many applications, for example, when stabilizing a
mechanical system [11], where state variables are position, velocity, and traction (acceleration) and
the system is controlled by varying the traction (e.g., by means of a step motor). A similar system
with the phase constraint on the third variable, but with a discontinuous control, was considered
in [16]. Since the traction in real systems is limited, the stabilizing control must not result in the
violation of the phase constraint (4), where X3 is the maximum possible traction.

The stabilizing control is sought in the form

U(x) = −k5(x3 + k4σ2(k3(x2 + k2σ1(k1x1)))), (5)

where σ1 and σ2 are arbitrary sigmoids. The feedback of this form guarantees the fulfillment of phase
constraint (4) with X3 = k4 if |x3(0)| � k4. Indeed, suppose that the phase constraint is satisfied
at the initial moment. Variable x3(t) achieves local extremum on the trajectory when U(x) = 0; on
the other hand, from formula (5), it is seen that the control equals zero when x3 = −k4σ2(·). Hence,
|x3(t)| cannot be greater than k4; i.e., domain |x3| � k4 is an invariant set of the system. Thus,
if variable x3 cannot physically exceed its limit value (like, for instance, in the abovementioned
example of the mechanical system), then it is sufficient to study stability of the system in this
invariant set. We, however, consider a more general problem statement and will prove stability
for any initial conditions in R3. In so doing, if the initial point belongs to the invariant set, then
the phase constraint (4) is fulfilled for any t � 0; otherwise, starting from some (depending on the
initial conditions) finite instant.

Additional advantages of control (5) are (a) exponential rate of the deviation decrease near the
equilibrium and (b) its boundedness for any deviations from the equilibrium state as long as the
phase constraint is fulfilled at the initial point.

Coefficients k2 and k4, which set limits of sigmoid variations, are referred to as model parameters,
since their values are determined by the model of the system under study, and, unlike the other three
coefficients cannot be selected arbitrarily. Given k2 and k4, parameters k1, k3, and k5 determine
the character of the transition process [5, 7] and are referred to as design parameters. They are
selected by the designer of the control system with the aim, for instance, to optimize (in one or
another sense) its performance.

Without loss of generality, the model parameters can be set equal to ones, which reduces the
number of system parameters to three. Indeed, let us turn to the dimensionless model by ap-
plying the same change of variables and time as in the two-dimensional case [5], i.e., t̃ = k4t/k2,
x̃1 = k4x1/k

2
2 , and x̃2 = x2/k2, and define the third dimensionless variable as x̃3 = x3/k4. Sub-

stituting the new variables into system (3), (5) and turning to differentiation with respect to the
dimensionless time, we obtain the dimensionless model in which k̃2 = k̃4 = 1 and three other coeffi-
cients are given by the formulas k̃1 = k1k

2
2/k4, k̃3 = k2k3/k4, and k̃5 = k2k5/k4. In what follows, we

assume that all variables and parameters are dimensionless and will use the same notation (without
tilde) for them. In the dimensionless model, feedback (5) takes the form

U(x) = −k5(x3 + σ2(k3(x2 + σ1(k1x1))). (6)
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The goal of the study is to determine the conditions on the coefficients for which the proposed
feedback stabilizes the system in the entire space, i.e., to establish conditions of global stability of
system (3), (6). The study of stability presented in the next section is based on the construction
of an integral Lyapunov function of the closed-loop system. We will prove that the necessary
conditions of stability of the linearized in the neighborhood of the origin system are sufficient for
its global stability. Note that the application of other known approaches to studying stability, for
example, those based on the construction of the Lurie–Postnikov function or on the immersion
into the class of linear nonstationary systems with subsequent application of methods of absolute
stability theory allows one to prove, as a rule, only local stability (even if the system under study
is stable in the whole) and construct an estimate of the invariant attraction domain.

3. GLOBAL STABILITY CONDITIONS

Theorem 1. System (3), (6), where σ1(·) and σ2(·) are arbitrary sigmoids, is globally asymptot-
ically stable if and only if all the feedback coefficients are positive and k5 > k1.

Proof. Necessity. In order that the system be globally stable, it is necessary that the linearized
in the neighborhood of the origin system

ẋ1 = x2, ẋ2 = x3, ẋ3 = −k5x3 − k5k3x2 − k5k3k1x1

be stable. Applying the Hurwitz criterion to the latter system, we find that it is stable when all
the coefficients are positive and the condition k5 > k1 holds. Sufficiency. Let coefficients k1, k3
and k5 be positive. Let us consider the function

V (x) = k25

x1∫
0

σ2(k3σ1(k1s))ds + k5

x2∫
0

σ2(k3(s+ σ1(k1x1)))ds +
1

2
(x3 + k5x2)

2 (7)

and prove that it is Lyapunov function of system (3), (6).

Let Φ1 and Φ2 denote the first and second, respectively, integral terms in (7). Let us prove that
their sum and, hence, the entire function V (x) are positive ∀x ∈ R3.

Let us transform the second term Φ2 by changing the integration variable s̃ = s+ σ1(k1x1):

Φ2 = k5

x2+σ1(k1x1)∫
σ1(k1x1)

σ2(k3s̃)ds̃ = k5

x2+σ1(k1x1)∫
0

σ2(k3s̃)ds̃− k5

σ1(k1x1)∫
0

σ2(k3s̃)ds̃.

In the second term on the right-hand side of the last formula, we perform implicit one-to-one
(by virtue of monotonicity of function σ1) change of the integration variable s̃ = σ1(k1s). Taking
into account that ds̃ = k1σ

′
1(k1s)ds, where the prime denotes differentiation with respect to the

argument, the sum of Φ1 and Φ2 takes the following form:

Φ1 +Φ2 = k5

x1∫
0

σ2(k3σ1(k1s))[k5 − k1σ
′
1(k1s)]ds + k5

x2+σ1(k1x1)∫
0

σ2(k3s̃)ds̃.

The second integral on the right-hand side of this formula is positive by virtue of (1). Since the
derivative of the sigmoid satisfies the condition σ′(s) � 1 and, by the assumption of the theorem,
k5 > k1, we have

k5 − k1σ
′
1(k1s) > 0, (8)

from which it follows that the first integral and, hence, function V (x) are positive for all x 	= 0.
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It is evident that V (x) tends to infinity as ||x|| → ∞. Further, differentiating V (x) by virtue of
system (3), (6) and omitting the argument k1x1 of functions σ1 and σ′1 to shorten the notation, we
obtain

V̇ = k25σ2(k3σ1(·))x2 + k5x2

x2∫
0

σ′2(k3(s+ σ1(·)))k3σ′1(·)k1ds

+ k5σ2(k3(x2 + σ1(·)))x3 + (x3 + k5x2)[−k5(x3 + σ2(k3(x2 + σ1(·))) + k5x3]

= k25σ2(k3σ1(·))x2 − k25σ2(k3(x2 + σ1(·)))x2 + k1k3k5σ
′
1(·)x2

x2∫
0

σ′2(k3(s+ σ1(·)))ds.

Let us transform the integral on the right-hand side of the last expression:

x2∫
0

σ′2(k3(s+ σ1(·)))ds =
x2+σ1(·)∫
σ1(·)

σ′2(k3s̃)ds̃ =
1

k3
σ2(k3(x2 + σ1(·))) − 1

k3
σ2(k3σ1(·)).

Substituting the expression obtained into the formula for V̇ (x), we get

V̇ (x) = k5σ2(k3σ1(·))x2(k5 − k1σ
′
1(·)) − k5σ2(k3(x2 + σ1(·)))x2(k5 − k1σ

′
1(·))

= −k5(k5 − k1σ
′
1(·))[σ2(k3(x2 + σ1(·))) − σ2(k3σ1(·))]x2.

The product of the expression in the square brackets and x2 is positive by virtue of (2), from which,
with regard to (8), it follows that the derivative is negative definite for any x2 	= 0. The derivative
vanishes only on the set x2 = 0, which contains no entire trajectories but x = 0.

Thus, function V (x) satisfies all the conditions of the Barbashin–Krasovski theorem [20], and,
hence, the origin is asymptotically stable equilibrium of system (3), (6) in the whole. The theorem
is proved.

4. NUMERICAL EXAMPLES

As an illustration, we present results of numerical calculations for the feedback (6) in the form
of nested hyperbolic tangents with the coefficients k1 = 1, k3 = 3, and k5 = 5. Figure 2 shows the
invariant set of the system bounded by the level surface of the Lyapunov function (7) V (x) = k25 .
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Fig. 2. Level surface of the Lyapunov function (7).
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Fig. 3. Projections of cross-sections of the invariant set by planes x3 = const onto the plane (x1, x2).

Fig. 4. Plots of deviation x1(t) (1), velocity x2(t) (2), acceleration x3(t) (3), and control U(t) (4).

For greater clarity, Fig. 3 shows projections of six cross-sections of the level surface onto the plane
(x1, x2) (in Fig. 2, these cross-sections are depicted by bold lines) by the planes x3 = ci, c1 = −26,
c2 = −16, c3 = −6, c4 = 4, c5 = 14, and c6 = 24.

Results of solving stabilization problem for the system with initial conditions x1(0) = 0.1,
x2(0) = 1.4, x3(0) = −1 are presented in Fig. 4, which demonstrates efficiency of the stabiliza-
tion. The curves marked by 1, 2, 3, and 4 are plots of dependencies of deviation x1, velocity x2,
acceleration x3, and control U , respectively, on time. Although at the initial instant, the system
moves in the direction opposite to the equilibrium state, the deviation, after natural growth at
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the initial stage, rapidly (exponentially) decreases, the phase constraint is fulfilled for any t � 0,
control is reasonably constrained and does not result in overshooting.

5. CONCLUSIONS

The problem of stabilizing a chain of three integrators by a continuous control that guarantees
the fulfillment of a phase constraint on the third state variable has been studied. By turning
to dimensionless state variables, the original problem depending on five feedback coefficients has
been reduced to study of a three-parameter system. Advantages of the proposed feedback in the
form of nested sigmoids have been discussed. The basic result of the work is construction of the
Lyapunov function by means of which sufficient conditions of global stability of the closed-loop
system have been established. Numerical examples illustrating efficiency of stabilization by means
of the proposed feedback have been presented.
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